Abstract

Abstract Using observational data and phase 5 of the Coupled Model Intercomparison Project (CMIP5) model outputs [the preindustrial (PI) control run of the Community Climate System Model, version 4 (CCSM4) and historical simulations of 17 CMIP5 models], Indian Ocean dipoles (IODs) with a peak in fall are categorized into three types. The first type is closely related to the development phase of El Niño/La Niña. The second type evolves from the basinwide warming (cooling) in the tropical Indian Ocean (IO), usually occurring in the year following El Niño (La Niña). The third type is independent of El Niño and La Niña. The dominant trigger condition for the first (third) type of IOD is the anomalous Walker circulation (anomalous cross-equatorial flow); the anomalous zonal sea surface temperature (SST) gradient in the tropical IO is the trigger condition for the second type. The occurrence of anomalous ocean Rossby waves during the forming stage of IO basinwide mode and their effect on SST in the southwestern IO during winter and spring are critical for early development of the second type of IOD. Although most models simulate a stronger El Niño–Southern Oscillation and IOD compared to the observations, this does not influence the phase-locking and classification of the IOD peaking in the fall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call