Abstract

BackgroundTo determine how the mechanical property and micro structure affect tissue regeneration and angiogenesis, three types of scaffolds were studied. Acellular dermal matrices (ADM), produced from human skin by removing the epidermis and cells, has been widely used in wound healing because of its high mechanical strength. Collagen scaffolds (CS) incorporated with poly(glycolide-co-L-lactide) (PLGA) mesh forms a well-supported hybrid dermal equivalent poly(glycolide-co-L-lactide) mesh/collagen scaffolds (PMCS). We designed this scaffold to enhance the CS mechanical property. These three different dermal substitutes—ADM, CS and PMCSs are different in the tensile properties and microstructure.MethodsSeveral basic physical characteristics of dermal substitutes were investigated in vitro. To characterize the angiogenesis and tissue regeneration, the materials were embedded subcutaneously in Sprague–Dawley (SD) rats. At weeks 1, 2, 4 and 8 post-surgery, the tissue specimens were harvested for histology, immunohistochemistry and real-time quantitative PCR (RT-qPCR).ResultsIn vitro studies demonstrated ADM had a higher Young’s modulus (6.94 MPa) rather than CS (0.19 MPa) and PMCS (3.33 MPa) groups in the wet state. Compared with ADMs and CSs, PMCSs with three-dimensional porous structures resembling skin and moderate mechanical properties can promote tissue ingrowth more quickly after implantation. In addition, the vascularization of the PMCS group is more obvious than that of the other two groups. The incorporation of a PLGA knitted mesh in CSs can improve the mechanical properties with little influence on the three-dimensional porous microstructure. After implantation, PMCSs can resist the contraction and promote cell infiltration, neotissue formation and blood vessel ingrowth, especially from the mesh side. Although ADM has high mechanical strength, its vascularization is poor because the pore size is too small. In conclusion, the mechanical properties of scaffolds are important for maintaining the three-dimensional microarchitecture of constructs used to induce tissue regeneration and vascularization.ConclusionThe results illustrated that tissue regeneration requires the proper pore size and an appropriate mechanical property like PMCS which could satisfy these conditions to sustain growth.

Highlights

  • To determine how the mechanical property and micro structure affect tissue regeneration and angiogenesis, three types of scaffolds were studied

  • We developed poly (L-lactide-co-glycolide) (PLGA) yarns knitted into mesh-reinforced collagen scaffolds to enhance the collagen scaffolds’ mechanical properties

  • When embedded into the dorsal subcutaneous pockets, poly(glycolide-co-L-lactide) mesh/collagen scaffolds (PMCS) can resist the contraction, induce cell infiltration and neo-tissue formation, and promote blood vessel ingrowth compared with Collagen scaffolds (CS)

Read more

Summary

Introduction

To determine how the mechanical property and micro structure affect tissue regeneration and angiogenesis, three types of scaffolds were studied. Collagen scaffolds (CS) incorporated with poly(glycolide-co-L-lactide) (PLGA) mesh forms a well-supported hybrid dermal equivalent poly(glycolide-co-L-lactide) mesh/collagen scaffolds (PMCS). We designed this scaffold to enhance the CS mechanical property. Tissue engineering has a significant potential to provide alternative approaches for skin regeneration, several problems have hampered progress in translating technological advances to clinical reality [6,7]. The ideal substitutes should have suitable properties that effectively induce rapid angiogenesis, a significant challenge in the field of tissue engineering and regenerative medicine, which is one of the crucial premises to promote regeneration and decrease the risk of infection [14,15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call