Abstract

SUMMARYA three‐time scale singular perturbation control law is designed for a nonlinear helicopter model in vertical flight. The proposed control law is based on time scale decomposition and is able to achieve the desired altitude by selecting a desired angular velocity and the associated collective pitch angle of the blades. The stability of the system is performed by presenting a stability analysis for generic three‐time scale singularly perturbed systems, which allows to construct a composite Lyapunov function for the resultant closed‐loop system by using time scale separation and also providing mathematical expressions for the upper bounds of the singularly perturbed parameters that define the three‐time scale. Numerical results on both, the singular perturbation control strategy and the stability analysis, are also presented for the studied nonlinear highly coupled helicopter model. Copyright © 2012 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.