Abstract

ABSTRACTA semi-Markovian random walk process (X(t)) with a generalized beta distribution of chance is considered. The asymptotic expansions for the first four moments of the ergodic distribution of the process are obtained as E(ζn) → ∞ when the random variable ζn has a generalized beta distribution with parameters (s, S, α, β); α, β > 1, 0 ⩽ s < S < ∞. Finally, the accuracy of the asymptotic expansions is examined by using the Monte Carlo simulation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.