Abstract

We present a purely syntactic theory of graph reduction for the canonical combinators S, K, and I, where graph vertices are represented with evaluation contexts and let expressions. We express this syntactic theory as a reduction semantics. We then factor out the introduction of let expressions to denote as many graph vertices as possible upfront instead of on demand, resulting in a second syntactic theory, this one of term graphs in the sense of Barendregt et al. We then interpret let expressions as operations over a global store (thus shifting, in Strachey's words, from denotable entities to storable entities), resulting in a third syntactic theory, which we express as a reduction semantics. This store-based reduction semantics corresponds to a store-based abstract machine whose architecture coincides with that of Turner's original reduction machine. The three syntactic theories presented here therefore properly account for combinatory graph reduction As We Know It.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.