Abstract

The fine classification of land cover around complex mining areas is important for environmental protection and sustainable development. Although some advances have been made in the utilization of high-resolution remote sensing imagery and classification algorithms, the following issues still remain: (1) how the multimodal spectral–spatial and topographic features can be learned for complex mining areas; (2) how the key features can be extracted; and (3) how the contextual information can be captured among different features. In this study, we proposed a novel model comprising the following three main strategies: (1) design comprising a three-stream multimodal feature learning and post-fusion method; (2) integration of deep separable asymmetric convolution blocks and parallel channel and spatial attention mechanisms into the DenseNet architecture; and (3) use of a bidirectional long short-term memory (BiLSTM) network to further learn cross-channel context features. The experiments were carried out in Wuhan City, China using ZiYuan-3 imagery. The proposed model was found to exhibit a better performance than other models, with an overall accuracy of 98.65% ± 0.05% and an improvement of 4.03% over the basic model. In addition, the proposed model yielded an obviously better visual prediction map for the entire study area. Overall, the proposed model is beneficial for multimodal feature learning and complex landscape applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.