Abstract

A three-step solution technique is presented for solving two-dimensional (2D) and three-dimensional (3D) nonhomogeneous material problems using the multi-domain boundary element method. The discretized boundary element formulation expressed in terms of normalized displacements and tractions is written for each sub-domain. The first step is to eliminate internal variables at the individual domain level. The second step is to eliminate boundary unknowns defined over nodes used only by the domain itself. And the third step is to establish the system of equations according to the compatibility of displacements and equilibrium of tractions at common interface nodes. Discontinuous elements are utilized to model the traction discontinuity across corner nodes. The distinct feature of the three-step solver is that only interface displacements are unknowns in the final system of equations and the coefficient matrix is blocked sparse. As a result, large-scale 3D problems can be solved efficiently. Three numerical examples for 2D and 3D problems are given to demonstrate the effectiveness of the presented technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.