Abstract

Iterative methods based on matrix splittings are useful in solving large sparse linear systems. In this direction, proper splittings and its several extensions are used to deal with singular and rectangular linear systems. In this article, we introduce a new iteration scheme called three-step alternating iterations using proper splittings and group inverses to find an approximate solution of singular linear systems, iteratively. A preconditioned alternating iterative scheme is also proposed to relax some sufficient conditions and to obtain faster convergence as well. We then show that our scheme converges faster than the existing one. The theoretical findings are then validated numerically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.