Abstract

ABSTRACTCervical cancer is one of the major challenges in developing nations like India.In recent years, a lot of research has been done todetect cervical cancer at an early stage through the pap-smear test, human papillomavirus test (HPV), etc. In this study, we have proposed athree-stage cervical cancer classifier to classify cervical cells among normal and abnormal cells using a hybrid ensemble classifier based onfeatures extracted using pre-trained neural networks. Furthermore, this work extends to classify the cells among different levels of dysplastic mainly mild, moderate and severe. The accuracy achieved for 2-class classification among normal and abnormal cells is up to 100% while for 4-class classification among normal, mild, moderate and severe dysplastic cells is up to 98.91% and 99.12% for new and old Herlev university hospital datasets respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.