Abstract
A three-stage anaerobic digester setup was configured and evaluated for enhanced methane production during co-digestion of food waste and waste activated sludge and the corresponding bacterial and methanogen communities were characterized. Results showed that the average methane yield (0.496 L/gVS) in the three-stage digester was 13–52% higher than that of one- and two-stage digesters. Compared to controls, an increase of 12–47% in volatile solids reduction was achieved in the three-stage digester (69.3 ± 6.7%). Bacterial phyla Proteobacteria, Firmicutes and Bacteroidetes dominated in one-, two- and three-stage digester while genera Pseudomonas, Tissierella, and Petrimonas were selectively enriched in the three-stage digester due to functional segregation. Taxonomic analysis identified 8 dominant methanogen genera, of which Methanosarcina, Methanosaeta, Methanobacterium and Methanolinea collectively accounted for 80%. With increasing OLR and digester stage number, the dominant methanogenic pathway shifted from hydrogenotrophic pattern to acetoclastic pattern and reached a final synergy of these two.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.