Abstract

As a key component in all-optical networks, all-optical switches play a role in constructing all-optical switching. Due to the absence of photoelectric conversion, all-optical networks can overcome the constraints of electronic bottlenecks, thereby improving communication speed and expanding their communication bandwidth. We study all-optical switches based on the interactions among three optical solitons. By analytically solving the coupled nonlinear Schrödinger equation, we obtain the three-soliton solution to the equation. We discuss the nonlinear dynamic characteristics of various optical solitons under different initial conditions. Meanwhile, we analyze the influence of relevant physical parameters on the realization of all-optical switching function during the process of three-soliton interactions. The relevant conclusions will be beneficial for expanding network bandwidth and reducing power consumption to meet the growing demand for bandwidth and traffic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.