Abstract

In this article, we propose a new notion of multiscale convergence, called ‘three-scale’, which aims to give a topological framework in which to assess complex processes occurring at three different scales or levels within a heterogeneous medium. This generalizes and extends the notion of two-scale convergence, a well-established concept that is now commonly used for obtaining an averaged, asymptotic value (homogenization) of processes that exist on two different spatial scales. The well-posedness of this new concept is justified via a compactness theorem which ensures that all bounded sequences in L 2(Ω) are relative compact with respect to the three-scale convergence. This is taken further by giving a boundedness characterization of three-scale convergent sequences and is then continued with the introduction of the notion of ‘strong three-scale convergence’ whose well-posedness is also discussed. Finally, the three-scale convergence of the gradients is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.