Abstract

CDK7, CDK8, and CDK9 are cyclin-dependent kinases (CDKs) that phosphorylate the C-terminal domain (CTD) of RNA polymerase II. They have distinct functions in transcription. Because the three CDKs target only serine 5 in the heptad repeat of model CTD substrates containing various numbers of repeats, we tested the hypothesis that the kinases differ in their ability to phosphorylate CTD heptad arrays. Our data show that the kinases display different preferences for phosphorylating individual heptads in a synthetic CTD substrate containing three heptamer repeats and specific regions of the CTD in glutathione S-transferase fusion proteins. They also exhibit differences in their ability to phosphorylate a synthetic CTD peptide that contains Ser-2-PO(4). This phosphorylated peptide is a poor substrate for CDK9 complexes. CDK8 and CDK9 complexes, bound to viral activators E1A and Tat, respectively, target only serine 5 for phosphorylation in the CTD peptides, and binding to the viral activators does not change the substrate preference of these kinases. These results imply that the display of different CTD heptads during transcription, as well as their phosphorylation state, can affect their phosphorylation by the different transcription-associated CDKs.

Highlights

  • The three cyclin-dependent kinases, CDK7, CDK8, and CDK9,1 have an established connection with transcription machinery and are regulated by constitutively expressed cyclins

  • Preinitiation complexes formed on the HIV-1 promoter contain CDK9, which stays with polymerase II (pol II) throughout the elongation process [25,26,27]

  • When the CDK7, -8, and -9 immunocomplexes were probed for the presence of CDK7, CDK8, or CDK9, only the cognate kinase was detected in each case

Read more

Summary

Introduction

The three cyclin-dependent kinases, CDK7, CDK8, and CDK9,1 have an established connection with transcription machinery and are regulated by constitutively expressed cyclins. Our data show that the kinases display different preferences for phosphorylating individual heptads in a synthetic CTD substrate containing three heptamer repeats and specific regions of the CTD in glutathione S-transferase fusion proteins. CDK8 and CDK9 complexes, bound to viral activators E1A and Tat, respectively, target only serine 5 for phosphorylation in the CTD peptides, and binding to the viral activators does not change the substrate preference of these kinases.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.