Abstract

The Ran GTPase is an essential protein that has multiple functions in eukaryotic cells. Fission yeast cells in which Ran is misregulated arrest after mitosis with condensed, unreplicated chromosomes and abnormal nuclear envelopes. The fission yeast sns mutants arrest with a similar cell cycle block and interact genetically with the Ran system. sns-A10, sns-B2 and sns-B9 have mutations in the fission yeast homologues of S. cerevisiae Sar1p, Sec31p and Sec53p, respectively, which are required for the early steps of the protein secretory pathway. The three sns mutants accumulate a normally secreted protein in the endoplasmic reticulum (ER), have an increased amount of ER membrane, and the ER/nuclear envelope lumen is dilated. Neither a post-ER block in the secretory pathway, nor ER proliferation caused by overexpression of an integral ER membrane protein, results in a cell cycle-specific defect. Therefore, the arrest seen in sns-A10, sns-B2 and sns-B9 is most likely due to nuclear envelope defects that render the cells unable to re-establish the interphase organization of the nucleus after mitosis. As a consequence, these mutants are unable to decondense their chromosomes or to initiate of the next round of DNA replication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.