Abstract

Levofloxacin (LEV) infiltrated in groundwater has threatened the safety of drinking water. For in-situ remediation of LEV-contaminated groundwater, there exists a main challenge of exploiting proper high efficient backfill medium in utilizing charming permeable reactive barriers (PRBs). Herein, three porous shapeable three-component hydrogen-bonded covalent organic aerogels (HCOA-1, HCOA-2 and HCOA-3) were fabricated based on a multiple-linking-site strategy to evaluate for adsorptive removal of LEV. The three HCOAs exhibited satisfactory performance in LEV adsorption that could integrate high adsorption capacity, good antiion interference, excellent recyclability and wide pH tolerance. The different regularity of kinetics and isotherms of three HCOAs signified that electrostatic effect, pore preservation, hydrogen bonding probably govern the adsorption process in combination, coupling with π-π electron-donor-acceptor (EDA), dipole-dipole and hydrophobic-hydrophobic interaction besides. In addition, the response surface methodology (RSM) was employed for studying the single and synergetic effects of selected variables and optimizing operation conditions. Furthermore, a laboratory PRB column packed with processable HCOA-2 was set up to investigate the LEV removal, and the breakthrough data was explained by Adams-Bohart, Thomas, BDST and Yoon-Nelson models. We believe could hopefully bring HCOAs into the real in-situ remediation of such challenging and persistent LEV-polluted groundwater with further massive-scale efficiently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.