Abstract

Under excess light, the efficient PSII light-harvesting antenna is switched into a photoprotected state in which potentially harmful absorbed energy is thermally dissipated. Changes occur rapidly and reversibly, enhanced by de-epoxidation of violaxanthin (V) to zeaxanthin (Z). This process is usually measured as non-photochemical quenching (NPQ) of chlorophyll (Chl) fluorescence. Using instrumentation for instantaneous leaf freezing, NPQ, spectral reflectance, and interconversions within the xanthophyll cycle with time resolution of seconds were recorded from Quercus coccifera leaves during low light (LL) to high light (HL) transitions, followed by relaxation at LL. During the first 30 s of both the LL to HL and HL to LL transitions, no activity of the xanthophyll cycle was detected, whereas 70–75% of the NPQ was formed and relaxed, respectively, by that time, the latter being traits of a rapidly reversible photoprotective energy dissipation. Three different Z pools were identified, which play different roles in energy dissipation and photoprotection. In conclusion, ΔpH was crucial to NPQ formation and relaxation in Q. coccifera during light transitions. Only a minor fraction of Z was associated to quenching, whereas the largest Z pool was not related to thermal dissipation. The latter is proposed to participate in photoprotection acting as antioxidant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.