Abstract
In this paper we develop a general method for constructing three-point functions in conformal field theory with affine Lie group symmetry, continuing our recent work on two-point functions. The results are provided in terms of triangular coordinates used in a wave function description of vectors in highest weight modules. In this framework, complicated couplings translate into ordinary products of certain elementary polynomials. The discussions pertain to all simple Lie groups and arbitrary integrable representation. An interesting by-product is a general procedure for computing tensor product coefficients, essentially by counting integer solutions to certain inequalities. As an illustration of the construction, we consider in great detail the three cases SL(3), SL(4) and SO(5).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.