Abstract
Energy Correlators measure the energy deposited in multiple detectors as a function of the angles between the detectors. In this paper, we analytically compute the three particle correlator in the collinear limit in QCD for quark and gluon jets, and also in mathcal{N} = 4 super Yang-Mills theory. We find an intriguing duality between the integrals for the energy correlators and infrared finite Feynman parameter integrals, which maps the angles of the correlators to dual momentum variables. In mathcal{N} = 4, we use this duality to express our result as a rational sum of simple Feynman integrals (triangles and boxes). In QCD our result is expressed as a sum of the same transcendental functions, but with more complicated rational functions of cross ratio variables as coefficients. Our results represent the first analytic calculation of a three-prong jet substructure observable of phenomenological relevance for the LHC, revealing unexplored simplicity in the energy flow of QCD jets. They also provide valuable data for improving the understanding of the light-ray operator product expansion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.