Abstract

The mechanical behaviors of two multi-materials, DP590 (steel sheet)–A356 (cast aluminum alloy) and SS330 (steel sheet)–A5052 (aluminum sheet), were studied. A structural adhesive was used for the joining of steel and aluminum at adhesion strengths of 10, 22, and 30 MPa. To demonstrate that the three-point bending properties depend on the difference in strength between steel and aluminum and adhesion strength, optical microscopy (OM), scanning electron microscopy (SEM), and finite-element analysis (FEA) were performed. According to the results of the bending tests on both multi-materials under the same stacking conditions, the flexural stress increased with the improvement in the adhesion strength until interface separation or aluminum fracture. At the same adhesion strength, the DP590 (lower)–A356 (upper) and SS330 (upper)–A5052 (lower) configurations exhibited a tendency to decrease in the sudden stress drop due to aluminum fracture and interface separation. The bending results were analyzed through the FEA and the stress distribution as a function of the stacking and adhesion strength was confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.