Abstract

Abstract Low microemulsion viscosity is critical for the success of chemical EOR. Typical microemulsion viscosities are measured using a rheometer and are considered to be static measurements. Given that microemulsions have a propensity to show non-Newtonian behavior, static viscosity measurements are not scalable to dynamic viscosities observed in cores and hence difficult to scale-up to field designs using simulations. We present a technique to measure dynamic microemulsion viscosity using a modified two-phase steady state relative permeability setup. Such dynamic viscosities provide a more practical feel for microemulsion viscosity under reservoir conditions in the pores and allow for selection of low microemulsion viscosity formulations. A two-phase steady state relative permeability setup was used with continuous co-injection of oil and surfactant. A glass filled sand pack was used as a surrogate core and the injection fluids were allowed to equilibrate into the appropriate phases as determined by the phase behavior. For the rapidly equilibrating and low viscosity Winsor Type III formulations three phases are clearly observed in the sand packs. Using the phase cuts in the sand pack/effluent and the known oil and water viscosities, we can estimate the microemulsion viscosity. Both low and high viscosity formulations were tested in corefloods and oil recovery measured to illustrate the importance of low viscosity microemulsions for oil recovery. As expected, the low viscosity microemulsions correlated with higher oil recovery. In addition, the equilibration times to reach Winsor Type III microemulsions were also linked to better oil recovery. For the well behaved formulations that equilibrated in less than 2 days the static microemulsion viscosity correlated well with the dynamic viscosity. The modified steady state relative permeability setup can accurately estimate microemulsion viscosity and allow for better screening of surfactant formulations identified for field flooding. The dynamic microemulsion viscosities can also provide inputs for numerical simulation and better predict microemulsion behavior in the subsurface during field surfactant floods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.