Abstract

A three-phase GaN-based motor inverter IC with three integrated phase current mirror sensors (sense-FETs or sense-HEMTs, 1200:1 ratio), a temperature sensor, and an amplifier is presented and experimentally operated. The three low-side currents are read out by virtual grounding transimpedance amplifiers. A modified summed DC current readout circuit using only one amplifier is also discussed. During continuous 24 V motor operation with space-vector pulse width modulation (SVPWM), the sensor signal is measured and a bidirectional measurement capability is verified. The measured risetime of the sensor signal is 51 ns, indicating around 7 MHz bandwidth (without intentional optimization for high bandwidth). The IC is operated up to 32 V on DC-biased semi-floating substrate to limit negative static back-gating of the high-side transistors to around -7% of the DC-link voltage. Analysis of the capacitive coupling from the three switch-nodes to the substrate is calculated for SVPWM based on capacitance measurement, resulting in four discrete semi-floating substrate voltage levels, which is experimentally verified. Integrated advanced power converter topologies with sensors improve the power density of power electronics applications, such as for low-voltage motor drive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call