Abstract

The neonatal period of liver development is an often overlooked phase of development. For instance, ontogeny of xenobiotic-metabolizing enzymes can markedly affect biotransformation as the liver matures. To systematically examine the ontogenic gene expression patterns of cytochrome P450 genes (P450) in mice, the gene expression profiles of 19 xenobiotic-metabolizing P450 in Cyp1 to 4 families were determined. The mRNA levels in C57BL/6 mouse livers were quantified using branched DNA technology at the following ages: gestational day 17 (2 days before birth) and postnatal days 0, 1, 3, 5, 10, 15, 20, 30, and 45. Among the 13 P450 genes expressed in mouse livers, three distinct ontogenic expression patterns were identified by cluster analysis. Genes in group 1 (Cyp3a16 as well as 3a41b in male) were expressed in the perinatal period, but they were essentially nondetectable by 30 days of age. Genes in group 2 (Cyp2e1, 3a11, and 4a10 as well as 3a41b in female) quickly increased after birth and reached maximal expression levels by day 5. Genes in group 3 (Cyp1a2, 2a4, 2b10, 2c29, 2d22, 2f2, 3a13, and 3a25) were expressed at low levels until days 10 to 15, but they markedly increased at day 20 to a high and stable level. In conclusion, the developmental expression of P450 in mouse liver can be divided into three patterns, suggesting that different mechanisms are responsible for the expression of P450 during liver maturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.