Abstract

To develop and demonstrate MR elastography (MRE) for the measurement of three independent viscoelastic constants of skeletal muscle according to the theory of linear elasticity of incompressible materials with transverse isotropy (TI). Three-dimensional multifrequency MRE was applied to soleus, gastrocnemius, and tibialis anterior muscles in 10 healthy volunteers. The rotational wave fields were solved for complex-valued viscoelastic parameters μ12, μ13, and E3 corresponding to two shear moduli (within the planes of isotropy and symmetry of TI materials) and Young's modulus (along the principal fiber axis). Anisotropy was represented by the inequality μ12 < μ13 < 1/3E3 considering storage and loss properties of the soleus and gastrocnemius muscles, whereas storage shear moduli of tibialis were indistinguishable. Storage moduli were: 1.06 ± 0.12, 1.33 ± 0.10, 6.92 ± 0.95 kPa (soleus); 0.90 ± 0.11, 1.30 ± 0.15, 8.22 ± 1.37 kPa (gastrocnemius); 1.26 ± 0.16, 1.27 ± 0.11, 9.29 ± 1.42 kPa (tibialis), for μ12, μ13, and E3, respectively. The muscles were different in their μ12 and E3 values, whereas μ13 was less sensitive to the muscle type. Leg differences were observed in the soleus and gastrocnemius muscles. Recovery of the full elasticity tensor in incompressible TI materials is feasible by three-dimensional inversion of the time-harmonic shear wave equation. The method is potentially useful for the clinical evaluation of skeletal muscle anisotropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.