Abstract

Two regions of human genomic DNA, each containing several keratin genes, were isolated and partially sequenced. The keratin genes are inactive, having suffered deleterious mutations. Both regions contain at least four keratin genes arranged in a head-to-tail orientation including a pseudogene for keratin K#16. Within each segment there are two keratin genes in close linkage with only 1.5 kb of DNA between them. Sequence comparison of the two regions showed 98.9% identity in both the coding and the intronic segments of the pseudogenes. The pseudogenes show 94% identity to their functional counterparts. Southern hybridization analysis showed that the segments are paralogous, not allelic. The regions are products of two independent, recent duplication events. The first occurred approximately 24 million years ago, after the separation of primates from the rhesus/baboon line. The second is specific for the human lineage, having occurred approximately 3.8 million years ago. Analysis of the genomic DNAs of primates showed the presence of only one of the regions in the DNAs of gibbon and gorilla, while rhesus monkey and baboon were missing both copies. We conclude that the human keratin genes are still actively evolving, with new duplications having occurred as recently as after the separation of human and gorilla ancestors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call