Abstract

In this paper, we propose a reflected forward-backward splitting algorithm with two different inertial extrapolations to find a zero of the sum of three monotone operators consisting of the maximal monotone operator, Lipschitz continuous monotone operator, and a cocoercive operator in real Hilbert spaces. One of the interesting features of the proposed algorithm is that both the Lipschitz continuous monotone operator and the cocoercive operator are computed explicitly each with one evaluation per iteration. We then obtain weak and strong convergence results under some mild conditions. We finally give a numerical illustration to show that our proposed algorithm is effective and competitive with other related algorithms in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.