Abstract

Aethina tumida (small hive beetle, SHB) is a rapidly spreading invasive parasite of bee colonies. The olfactory system plays a key role in insect behavior, and odorant-binding proteins (OBPs) are involved in the first step of the olfactory signal transduction pathway and the detection of host volatiles. However, the olfactory mechanism of OBPs in SHB-localized bee colonies is unclear. In this study, electroantennogram (EAG) and behavioral bioassay showed that only three compounds (2-heptanone, ocimene, and ethyl palmitate) from bee colonies triggered high electrophysiological and behavioral responses. Three antenna-specific OBP genes (OBP6, OBP11, and OBP19) were identified, and they were significantly expressed on adult days 6–7. Furthermore, by combining RNA interference (RNAi) with EAG, olfactometer bioassay, competitive fluorescence binding assays, and molecular docking, we found that these three OBP genes were involved in the recognition of 2-heptanone and ethyl palmitate, and AtumOBP6 is also involved in the recognition of ocimene. These data indicate that AtumOBP6, AtumOBP11, and AtumOBP19 play an important role in the olfactory response to bee colony volatiles. Our results provide new insights into the functions of the OBP families in A. tumida and help to explore more potential target genes for environmentally friendly pest control strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.