Abstract
Cyanuric chloride was chosen as a core skeleton which reacted with desired linker molecules, urea, thiourea and thiosemicarbazide, to prepare three novel functional covalent triazine-based frameworks, CCU (O-donor set), CCTU (S-donor set) and CCTS (S, N-donor set) respectively, designed for selective adsorption of U(VI). The products have high nitrogen concentration (>30wt%), regular structure, relatively high chemical and thermal stability. Adsorption behaviors of the products on U(VI) were examined by batch experiments. CCU and CCTU can extract U(VI) from simulated nuclear industrial effluent containing 12 co-existing cations with relatively high selectivity (54.4% and 54.2%, respectively). Especially, effects of donor atoms O/S on adsorption were investigated, and the outcomes indicate that the difference in coordinating ability between the donor atoms is weakened in large conjugated systems, and the related functional groups with originally very strong coordination abilities may not be the best choice for the application in selective adsorption of uranium and also other metals. The as-proposed approach can easily be expanded into design and preparation of new highly efficient adsorbents for selective separation and recovery of uranium through adjusting the structures, types and amounts of functional groups of adsorbents by choosing suitable linkers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.