Abstract

In the process of exploration and development of oil and gas fields, the acidic environment of oil reservoir, production and transport processes cause corrosion of pipelines and equipment, resulting in huge economic losses and production safety risks. Corrosion inhibitors were widely used in oil industry because of simple operation process and economical. In this study, three environmentally friendly corrosion inhibitors were synthesized based on the natural polysaccharide chitosan. Corrosion inhibition of three dendritic chitosan derivatives (We name them BH, CH and DH) on mild steel in 1 mol/L HCl solution with natural ventilation system was evaluated by weight loss experiment, electrochemical analysis and surface morphology characterization. The experimental results showed that when the three dendritic chitosan derivatives added in the corrosive medium were 500 mg L−1, the corrosion inhibition efficiencies were all more than 80%. Based on quantum chemical calculation, inhibition mechanisms of three dendritic chitosan derivatives were investigated according to molecular structures. The results showed that the benzene ring, Schiff base and N atom contained in the molecule were the active centers of electron exchange, which were more likely to form a film on the carbon steel surface, thereby slowing or inhibiting corrosion. The results also predicted the corrosion inhibition effect BH > DH > CH, which was consistent with the experimental conclusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.