Abstract

When an aldehyde molecule interacts with a nitrogen atom inserted in an aromatic ring, they form a number of non-bonding topologies. We measured the rotational spectra of three different isomers of the thiazole-formaldehyde adduct. In all of them, formaldehyde interacts specifically with thiazole through an n → π* interaction (along the Bürgi-Dunitz trajectory) and a C-H⋯O (acting as a proton acceptor) weak hydrogen bond, or through C-H⋯N (acting as a proton donor) and C-H⋯O (acting as a proton acceptor) weak hydrogen bonds. The spectra of isotopic substituted species were also measured to draw the molecular structures. Two n → π* stabilized isomers show a vertical structure in which the two molecular planes are perpendicular to each other, and the hydrogen bonded isomers feature a co-planar architecture. The competition between these non-bonding interactions was unveiled from experiments and theoretical calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call