Abstract

Quasi-complementary sequence sets (QCSSs) play an important role in multi-carrier code-division multiple-access (MC-CDMA) systems. They can support more users than perfect complementary sequence sets in MC-CDMA systems. It is desirable to design QCSSs with good parameters that are a trade-off of large set size, small periodic maximum magnitude correlation and small alphabet size. The main results are to construct new infinite families of QCSSs that all have small alphabet size and asymptotically optimal periodic maximum magnitude correlation. In this paper, we propose three new constructions of QCSSs using additive characters over finite fields. Notably, these QCSSs have new parameters and small alphabet sizes. Using the properties of characters and character sums, we determine their maximum periodic correlation magnitudes and prove that these QCSSs are asymptotically optimal with respect to the lower bound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.