Abstract
Functional neuronal computing systems that support information diversification require high-density memory with selector devices to reduce leakage current in cross-point architectures, which drives us to develop a functional switching layer that operates as three distinct devices, namely non-volatile memory, selector, and synaptic devices, using a GeTe-based single material system. In this study, amorphous Ag-GeTe switching layers are engineered by doping with Te species to achieve either resistive switching (RS) or threshold switching properties. The Ag/Ag-GeTe/Ag memory device exhibits multilevel characteristics via a tunable compliance current approach. By comparison, Ag/Ag-GeTex/Ag selector device provides excellent selectivity (>106) with a very low OFF-current (∼10−11 A). The RS mechanism for memory and selector devices is interrogated by using conductive atomic force microscopy. Moreover, the Ag/Ag-GeTe/Ag RS device mimics a cohort of basic and complex synaptic plasticity properties, including potentiation-depression and four-spike time-dependent plasticity rules that include asymmetric Hebbian, asymmetric anti-Hebbian, symmetric Hebbian, and symmetric anti-Hebbian learning rules. The capability of the synaptic devices to detect image edges is demonstrated by using a convolution neural network. The present work showcases the multi-functionality of Ag-GeTe materials, which will likely emerge as a prominent candidate for high-density cross-point architecture-based neuromorphic computing systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.