Abstract

We studied volatile determination in lignite coal samples using near-infrared (NIR) spectra. Firstly, spectra were pre-processed to eliminate useless information. Then, determination model was constructed by partial least squares regression. We used discrete wavelet transform to pre-processing. To study the influence of modeling on determination of volatile for NIR analysis of lignite coal samples, we applied three techniques to build determination model, including support vector regression, partial least square regression and radial basis function neural network. Comparison of the mean absolute percentage error (MAPE) and root mean square error of prediction (RMSEP) of the models show that the models constructed with radial basis function neural network gave the best results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.