Abstract

We compare three finite element‐based methods designed for two‐sided bounds of eigenvalues of symmetric elliptic second order operators. The first method is known as the Lehmann–Goerisch method. The second method is based on Crouzeix–Raviart nonconforming finite element method. The third one is a combination of generalized Weinstein and Kato bounds with complementarity‐based estimators. We concisely describe these methods and use them to solve three numerical examples. We compare their accuracy, computational performance, and generality in both the lowest and higher order case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.