Abstract

Models describing systems of coevolving populations often have asymptotically non–equilibrium dynamics (Red Queen dynamics (RQD)). We claim that if evolution is much slower than ecological changes, RQD arises due to either fast ecological processes, slow genetical processes, or to their interaction. The three corresponding generic types of RQD can be studied using singular perturbation theory and have very different properties and biological implications. We present simple examples of ecological, genetical, and ecogenetical RQD and describe how they may be recognized in natural populations. In particular, ecogenetical RQD often involve alternations of long epochs with radically different dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.