Abstract

The high-flux deuterium plasma impinging on a divertor degrades the long-term thermo-mechanical performance of its tungsten plasma-facing components. A prime actor in this is hydrogen embrittlement, a degradation phenomenon that involves the interactions between hydrogen and dislocations, the primary carriers of plasticity. Measuring such nanoscale interactions is still very challenging, which limits our understanding. Here, we demonstrate an experimental approach that combines thermal desorption spectroscopy (TDS) and nanoindentation, allowing to investigate the effect of hydrogen on the dislocation mobility in tungsten. Dislocation mobility was found to be reduced after deuterium injection, which is manifested as a ‘pop-in’ in the indentation stress-strain curve, with an average activation stress for dislocation mobility that was more than doubled. All experimental results can be confidently explained, in conjunction with experimental and numerical literature findings, by the simultaneous activation of three mechanisms responsible for dislocation pinning: (i) hydrogen trapping at pre-existing dislocations, (ii) hydrogen-induced vacancies, and (iii) stabilization of vacancies by hydrogen, contributing respectively 38%, 52%, and 34% to the extra activation stress. These mechanisms are considered to be essential for the proper understanding and modeling of hydrogen embrittlement in tungsten.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.