Abstract

We show that there exist sets of three mutually orthogonal $d$-dimensional maximally entangled states which cannot be perfectly distinguished using one-way local operations and classical communication (LOCC) for arbitrarily large values of $d$. This contrasts with several well-known families of maximally entangled states, for which any three states can be perfectly distinguished. We then show that two-way LOCC is sufficient to distinguish these examples. We also show that any three mutually orthogonal $d$-dimensional maximally entangled states can be perfectly distinguished using measurements with a positive partial transpose (PPT) and can be distinguished with one-way LOCC with high probability. These results circle around the question of whether there exist three maximally entangled states which cannot be distinguished using the full power of LOCC; we discuss possible approaches to answer this question.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.