Abstract
Three Mn(II) coordination polymers based on 1,10-phenanthroline derivatives and mono-, bi-, or trimetallic cores, namely [Mn(L1)(HL1)(Cl)] (1), [Mn(1,4-ndc)(HL1)] (2), and [Mn3(cis-chdc)2(trans-chdc)(L2)2] (3), where HL1 = 1-(1H-imidazo[4,5-f][1, 10]phenanthrolin-2-yl)naphthalen-2-ol, L2 = 2-(4-fluorophenyl)-1H-imidazo[4,5-f][1, 10]phenanthroline, 1,4-ndc = 1,4- naphthalenedicarboxylate and chdc = 1,4-cyclohexanedicarboxylate, have been synthesized under hydrothermal conditions. Their structures have been determined by single crystal X-ray diffraction analyses and further characterized by physico-chemical and spectroscopic methods. Compound 1 shows a one-dimensional zigzag chain structure. The neighboring chains are extended into a two-dimensional 3-connected (6,3) network by π–π interactions. Interestingly, two (6,3) networks are interpenetrated in a twofold mode. Compound 2 displays a 2D 4-connected (4,4) network structure based on dinuclear Mn(II) units. Adjacent networks are further connected through π–π interactions to form a three-dimensional supramolecular architecture. Compound 3 shows a 2D 4-connected (4,4) network structure based on trinuclear Mn(II) units. Further, the π–π interactions among adjacent networks resulted in a 3D supramolecular architecture for 3. Three manganese(II) coordination polymers based on 1,10-phenanthroline derivatives and mono-, bi-, or trimetallic cores and have been successfully synthesized under hydrothermal conditions, where their physico-chemical and spectroscopic behaviors have been investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.