Abstract

Automatic prediction of gait events (e.g., heel contact, flat foot, initiation of the swing, etc.) and corresponding profiles of the activations of muscles is important for real-time control of locomotion. This paper presents three supervised machine learning (ML) techniques for prediction of the activation patterns of muscles and sensory data, based on the history of sensory data, for walking assisted by a functional electrical stimulation (FES). Those ML's are: 1) a multilayer perceptron with Levenberg-Marquardt modification of backpropagation learning algorithm; 2) an adaptive-network-based fuzzy inference system (ANFIS); and 3) a combination of an entropy minimization type of inductive learning (IL) technique and a radial basis function (RBF) type of artificial neural network with orthogonal least squares learning algorithm. Here we show the prediction of the activation of the knee flexor muscles and the knee joint angle for seven consecutive strides based on the history of the knee joint angle and the ground reaction forces. The data used for training and testing of ML's was obtained from a simulation of walking assisted with an FES system [39]. The ability of generating rules for an FES controller was selected as the most important criterion when comparing the ML's. Other criteria such as generalization of results, computational complexity, and learning rate were also considered. The minimal number of rules and the most explicit and comprehensible rules were obtained by ANFIS. The best generalization was obtained by the IL and RBF network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.