Abstract
Abstract We construct three H-curl-curl finite elements. The P 2 P_{2} and P 3 P_{3} vector finite element spaces are both enriched by one common P 4 P_{4} bubble and their local degrees of freedom are 13 and 21, respectively. As there does not exist any P 1 P_{1} H-curl-curl conforming finite element, the P 1 P_{1} H-curl-curl nonconforming finite element is constructed with three additional P 4 P_{4} bubbles. Numerical tests are presented, confirming the conformity and the optimal order of convergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.