Abstract

In a previous paper (JHEP {\bf 05} (2014) 27), we calculated the three-loop thermodynamic potential of QCD at finite temperature $T$ and quark chemical potentials $\mu_q$ using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and isospin chemical potential $\mu_I$. We calculate the pressure, energy density, and entropy density, the trace anomaly, and the speed of sound at zero and nonzero $\mu_I$. The second, fourth, and sixth-order isospin susceptibilities are calculated at zero $\mu_I$. Our results can be directly compared to lattice QCD without Taylor expansions around $\mu_q=0$ since QCD has no sign problem at finite isospin chemical potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.