Abstract
A simple method for generating 2D binary amplitude structure with additive superimposition of mutually orthogonal 1D amplitude gratings is proposed. Its implementation requires software generated three binary amplitude gratings, i.e., the crossed Ronchi, checker board and 1D Ronchi gratings with aspect ratio equal to 0.5. Their computer processing involves only two steps. First the checker grating is multiplied by a high frequency 1D grating. Next the product is added to the crossed grating. In result 3-level transmittance (0, 0.5, 1) hybrid diffraction structure is obtained. The intermediate level results from the use of a dense 1D grating. The zero diffraction order, well separated from the rest of the spectrum, consists of crossed spectra of additively superimposed 1D Ronchi gratings. Detailed heuristic explanation of the process aided by spectrum domain analyses is presented. Additionally, simulations and experiments conducted in the Fresnel diffraction field exemplify the invented structure properties in comparison with the multiplicative superimposition crossed Ronchi grating. Up to authors' best knowledge the Fresnel field (self-imaging phenomenon or Talbot effect) properties of 2D periodic structure with additive superimposition of component 1D gratings have not been published in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.