Abstract

The advection equation, which is central to mathematical models in continuum mechanics, can be written in the symmetric form in which the advection operator is the half-sum of advection operators in the conservative (divergence) and nonconservative (characteristic) forms. In this case, the advection operator is skew-symmetric for any velocity vector. This fundamental property is preserved when using standard finite element spatial approximations in space. Various versions of two-level schemes for the advection equation have been studied earlier. In the present paper, unconditionally stable implicit three-level schemes of the second order of accuracy are considered for the advection equation. We also construct a class of schemes of the fourth order of accuracy, which deserves special attention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.