Abstract
We study the dynamic cavity method for dilute kinetic Ising models with synchronous update rules. For the parallel update rule we find for fully asymmetric models that the dynamic cavity equations reduce to a Markovian dynamics of the (time-dependent) marginal probabilities. For the random sequential update rule, also an instantiation of a synchronous update rule, we find on the other hand that the dynamic cavity equations do not reduce to a Markovian dynamics, unless an additional assumption of time factorization is introduced. For symmetric models we show that a fixed point of ordinary Belief propagation is also a fixed point of the dynamic cavity equations in the time factorized approximation. For clarity, the conclusions of the paper are formulated as three lemmas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.