Abstract

On the basis of classical linear theory on longitudinal, torsional and flexural waves in thin elastic rods, and taking finite deformation and dispersive effects into consideration, three kinds of nonlinear evolution equations are derived. Qualitative analysis of three kinds of nonlinear equations are presented. It is shown that these equations have homoclinic or heteroclinic orbits on the phase plane, corresponding to solitary wave or shock wave solutions, respectively. Based on the principle of homogeneous balance, these equations are solved with the Jacobi elliptic function expansion method. Results show that existence of solitary wave solution and shock wave solution is possible under certain conditions. These conclusions are consistent with qualitative analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.