Abstract

We introduce three kinds of column-vector Lie algebras Ls(s=1,2,3). By making invertible linear transformations we get the corresponding three induced Lie algebras. According to the defined loop algebras L̃s of the Lie algebras Ls(s=1,2,3), we establish three various isospectral problems. Then by applying Tu scheme, we obtain three different coupling integrable couplings of the Korteweg–de Vries (KdV) hierarchy and further reduce them to three kinds of explicit coupling integrable couplings of the KdV equation. One of the coupling integrable couplings of the KdV hierarchy of evolution equations possesses Hamiltonian structure obtained by using the quadratic-form identity and it is Liouville integrable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.