Abstract

The slope of the three-isotope plot for the isotopomer fractionation by direct or nearly direct photodissociation is obtained using a perturbation theoretical analysis. This result, correct to first order in the mass difference, is the same as that for equilibrium chemical exchange reactions, a similarity unexpected a priori. A comparison is made with computational results for N2O photodissociation. This theoretical slope for mass-dependent photolytic fractionation can be used to analyze the data for isotopic anomalies in spin-allowed photodissociation reactions. Earlier work on chemical equilibria is extended by avoiding a high-temperature approximation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call