Abstract

IRF4 is a master member of the interferon regulatory factor (IRF) family playing vital regulatory roles in immune system development and function. Tetrapods have a single-copy IRF4 gene, while teleosts harbor duplicated IRF4 genes. This work describes three IRF4 paralogs from yellow catfish (Pelteobagrus fulvidraco), designated PfIRF4A, PfIRF4B and PfIRF4B-like. These genes all contain a typical IRF structural architecture. Phylogenic and synteny analyses indicate that they should arise from the teleost-specific whole-genome duplication. PfIRF4 genes are abundantly expressed in the immune-related tissues and upregulated by PolyI:C, LPS, and Edwardsiella ictaluri. Ectopic expression of these genes inhibits the activation of fish type Ⅰ IFN promoters and downregulates the transcription levels of IFN-responsive genes, thus allowing the efficient replication of a fish rhabdovirus, spring viremia of carp virus (SVCV). PfIRF4s possess a repressive effect on MyD88-mediated activation of IFN and NF-κB. Some differences are observed between each individual paralog. PfIRF4B is the main form expressed across the tissues and the most up-regulated one after pathogen induction. It exerts a stronger inhibitory effect on IFN antiviral response than the other two paralogs. PfIRF4A and PfIRF4B-like are primarily present in the nucleus, while PfIRF4B displays colocalization and direct associations with MyD88 in the cytoplasm. Overall, the data demonstrate that three PfIRF4 paralogs show shared and individual functional properties in the negative regulation of type Ⅰ IFN response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call