Abstract

Exploration of new functional materials with enhanced performance from known ones is always an attractive strategy. A new infrared (IR) nonlinear-optical (NLO) mixed chalcogenide Ag2In2SiS3.06Se2.94 (1), was obtained through partial congener substitution originated from Ag2In2SiS6 (0). 1 crystallizes in the monoclinic space group Cc, and its three-dimensional (3D) polyanionic network is composed of {[In4Si2Se5(S/Se)11]12-}∞ helical chains sharing S/Se(5) corner atoms with cavities embedded with counterion Ag+ ions. It exhibits a much enhanced NLO response compared to that of 0, reaching 1.1 × AgGaS2. Further theoretical analysis results indicate that the large NLO response can be attributed to the synergistic effect of AgQ4 and InQ4 tetrahedral functional motifs. This work not only reports a new high-performance IR NLO material but also enriches the partial ion substitution strategy to obtain new functional materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call