Abstract

The insufficient oxidation capacity, high carrier recombination rate and limited sunlight absorption seriously suppress the photocatalytic activity of pure g-C3N4. Using state-of-the-art hybrid density functional theory, we report an efficient method to tackle all aforementioned issues of g-C3N4 by metal-nonmetal (S and K) co-doping here. We find the adsorption of K atom on hollow site causes dynamic strain of g-C3N4. The S + K co-doping not only shifts the band edges downwards to achieve a much large overpotential of ca. 0.76 V, but also significantly extends the visible-light absorption threshold of g-C3N4. More importantly, the newly established channel between neighboring heptazine units in the doped structure is highly favorable for the separation of charge carriers. Our results help the design of high-performance visible-light-responsive g–C3N4–based photocatalyst for solar water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.