Abstract

We define perfect ideals, near perfect ideals and upper bounded ideals of a finite-dimensional Lie superalgebra, and study the properties of these three kinds of ideals through their relevant sequences. We prove that a Lie superalgebra is solvable if and only if its maximal perfect ideal is zero, or its quotient superalgebra by the maximal perfect ideal is solvable. We also show that a Lie superalgebra is nilpotent if and only if its maximal near perfect ideal is zero. Moreover, we prove that a nilpotent Lie superalgebra has only one upper bounded ideal, which is the nilpotent Lie superalgebra itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.